21 research outputs found

    A Tight Lower Bound For Non-Coherent Index Erasure

    Get PDF

    Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

    Full text link
    Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any binary matrix that does not have the consecutive-ones property.Comment: A preliminary version of this work appeared in WG13: 39th International Workshop on Graph-Theoretic Concepts in Computer Scienc

    Faster graph algorithms via switching classes

    Get PDF
    2012 Summer.Includes bibliographical references.The runtime of an algorithm is intimately related to how an instance is represented. Recall that the runtimes of the first generation of graph algorithms were expressed as functions of n := |V|. This analysis was natural since at this time graphs were represented in n2 space via their adjacency matrix. It was soon noticed that if m := |E| = o(n2), then a variety of graph algorithms could be sped-up by computing the adjacency-list from the adjacency matrix, then running the algorithm on the more efficient adjacency-list representation. This motivated the introduction of m to the runtime of graph algorithms and it is now customary in algorithm design to assume that a graph instance is given in the form of its adjacency-list. For instance, a graph algorithm is not considered to run in linear time unless it runs in O(n + m) time. An O(n2) bound is not considered linear, even though the two bounds are the same in the worst case. Let m͂ be the size of the minimum representative of a graph G's switching class (w.r.t. to some switching operation). It is shown that better bounds for several classical graph algorithms can be obtained by modifying them so that their running time is a function of n+m͂ rather than of n+m. This is significant because m͂ is O(m) but m is not O(m͂). This is accomplished by first computing the so-called partially complemented adjacency list (pc-list) from an adjacency list, then designing an algorithm that is amenable to the more efficient pc-list representation. The pc-list data-structure is generalization of the adjacency list that has a natural correspondence to switching classes. Using this approach, better bounds are obtained for bipartite maximum matching, graph diameter, and vertex-weighted all-pairs shortest path

    A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

    Get PDF
    For even kk, the matchings connectivity matrix Mk\mathbf{M}_k encodes which pairs of perfect matchings on kk vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk\mathbf{M}_k over Z2\mathbb{Z}_2 is Θ(2k)\Theta(\sqrt 2^k) and used this to give an O∗((2+2)pw)O^*((2+\sqrt{2})^{\mathsf{pw}}) time algorithm for counting Hamiltonian cycles modulo 22 on graphs of pathwidth pw\mathsf{pw}. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within Mk\mathbf{M}_k, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of Mk\mathbf{M}_k is given; no stronger structural insights such as the existence of large permutation submatrices in Mk\mathbf{M}_k are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes pp) parameterized by pathwidth. To apply this technique, we prove that the rank of Mk\mathbf{M}_k over the rationals is 4k/poly(k)4^k / \mathrm{poly}(k). We also show that the rank of Mk\mathbf{M}_k over Zp\mathbb{Z}_p is Ω(1.97k)\Omega(1.97^k) for any prime p≠2p\neq 2 and even Ω(2.15k)\Omega(2.15^k) for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time O∗((6−ϵ)pw)O^*((6-\epsilon)^{\mathsf{pw}}) for any ϵ>0\epsilon>0 unless SETH fails. This bound is tight due to a O∗(6pw)O^*(6^{\mathsf{pw}}) time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes p≠2p\neq 2 in time O∗(3.97pw)O^*(3.97^\mathsf{pw}), indicating that the modulus can affect the complexity in intricate ways.Comment: improved lower bounds modulo primes, improved figures, to appear in SODA 201

    Towards a general theory of Erdős-Ko-Rado combinatorics

    Get PDF
    2014 Summer.Includes bibliographical references.In 1961, Erdős, Ko, and Rado proved that for a universe of size n ≥ 2k a family of k-subsets whose members pairwise intersect cannot be larger than n-1/k-1. This fundamental result of extremal combinatorics is now known as the EKR theorem for intersecting set families. Since then, there has been a proliferation of similar EKR theorems in extremal combinatorics that characterize families of more sophisticated objects that are largest with respect to a given intersection property. This line of research has given rise to many interesting combinatorial and algebraic techniques, the latter being the focus of this thesis. Algebraic methods for EKR results are attractive since they could potentially give rise to a unified theory of EKR combinatorics, but the state-of-the-art has been shown only to apply to sets, vector spaces, and permutation families. These categories lie on opposite ends of the stability spectrum since the stabilizers of sets and vector spaces are large as possible whereas the stabilizer of a permutation is small as possible. In this thesis, we investigate a category that lies somewhere in between, namely, the perfect matchings of the complete graph. In particular, we show that an algebraic method of Godsil's can be lifted to the more general algebraic framework of Gelfand pairs, giving the first algebraic proof of the EKR theorem for intersecting families of perfect matchings as a consequence. There is strong evidence to suggest that this framework can be used to approach the open problem of characterizing the maximum t-intersecting families of perfect matchings, whose combinatorial proof remains illusive. We conclude with obstacles and open directions for extending this framework to encompass a broader spectrum of categories
    corecore